Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Lancet Microbe ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20245381

ABSTRACT

BACKGROUND: Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2. METHODS: In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18-30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis µ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237. FINDINGS: Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%). INTERPRETATION: After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions. FUNDING: UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government.

2.
PLoS Biol ; 21(5): e3002118, 2023 05.
Article in English | MEDLINE | ID: covidwho-20235131

ABSTRACT

The relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. Reliable estimates of the infection fatality ratio (IFR) and infection hospitalisation ratio (IHR) along with the time-delay between infection and hospitalisation/death can inform forecasts of the numbers/timing of severe outcomes and allow healthcare services to better prepare for periods of increased demand. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in England approximately monthly from May 2020 to March 2022. Here, we analyse the changing relationship between prevalence of swab positivity and the IFR and IHR over this period in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models, and Bayesian P-spline models. We analyse data for all age groups together, as well as in 2 subgroups: those aged 65 and over and those aged 64 and under. Additionally, we analysed the relationship between swab positivity and daily case numbers to estimate the case ascertainment rate of England's mass testing programme. During 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late 2021/early 2022, the IFR and IHR had both decreased to 0.097% and 0.76%, respectively. The average case ascertainment rate over the entire duration of the study was estimated to be 36.1%, but there was some significant variation in continuous estimates of the case ascertainment rate. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Delta's emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late 2021/early 2022, these time-lags had decreased to 7 days for hospitalisations and 18 days for deaths. Even though many populations have high levels of immunity to SARS-CoV-2 from vaccination and natural infection, waning of immunity and variant emergence will continue to be an upwards pressure on the IHR and IFR. As investments in community surveillance of SARS-CoV-2 infection are scaled back, alternative methods are required to accurately track the ever-changing relationship between infection, hospitalisation, and death and hence provide vital information for healthcare provision and utilisation.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Pandemics , England/epidemiology , Hospitalization
3.
Lancet Microbe ; 4(6): e397-e408, 2023 06.
Article in English | MEDLINE | ID: covidwho-2294174

ABSTRACT

BACKGROUND: Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. METHODS: In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). FINDINGS: From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8-37·5) for pre-alpha-exposed contacts and 51·8% (42·5-61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24-2·31]), as did SARS-CoV-2 RNA presence on household surfaces (aRR=1·66 [1·09-2·55]) and contacts' hands (aRR=2·06 [1·57-2·69]). In six contacts with an initial negative URT PCR result, hand-swab (n=3) and household surface-swab (n=3) PCR positivity preceded URT PCR positivity. WGS corroborated household transmission. INTERPRETATION: Presence of SARS-CoV-2 RNA on primary cases' and contacts' hands and on frequently-touched household surfaces associates with transmission, identifying these as potential vectors for spread in households. FUNDING: National Institute for Health Research Health Protection Research Unit in Respiratory Infections, Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , RNA, Viral/genetics , Longitudinal Studies , Risk Factors , Cohort Studies
4.
Am J Public Health ; 113(5): 545-554, 2023 05.
Article in English | MEDLINE | ID: covidwho-2258149

ABSTRACT

Data System. The REal-time Assessment of Community Transmission-1 (REACT-1) Study was funded by the Department of Health and Social Care in England to provide reliable and timely estimates of prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection over time, by person and place. Data Collection/Processing. The study team (researchers from Imperial College London and its logistics partner Ipsos) wrote to named individuals aged 5 years and older in random cross-sections of the population of England, using the National Health Service list of patients registered with a general practitioner (near-universal coverage) as a sampling frame. We collected data over 2 to 3 weeks approximately every month across 19 rounds of data collection from May 1, 2020, to March 31, 2022. Data Analysis/Dissemination. We have disseminated the data and study materials widely via the study Web site, preprints, publications in peer-reviewed journals, and the media. We make available data tabulations, suitably anonymized to protect participant confidentiality, on request to the study's data access committee. Public Health Implications. The study provided inter alia real-time data on SARS-CoV-2 prevalence over time, by area, and by sociodemographic variables; estimates of vaccine effectiveness; and symptom profiles, and detected emergence of new variants based on viral genome sequencing. (Am J Public Health. 2023;113(5):545-554. https://doi.org/10.2105/AJPH.2023.307230).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , England/epidemiology , Public Health , State Medicine , Cross-Sectional Studies
5.
Arch Dis Child ; 108(7): e12, 2023 07.
Article in English | MEDLINE | ID: covidwho-2250472

ABSTRACT

OBJECTIVE: To estimate the prevalence of, and associated risk factors for, persistent symptoms post-COVID-19 among children aged 5-17 years in England. DESIGN: Serial cross-sectional study. SETTING: Rounds 10-19 (March 2021 to March 2022) of the REal-time Assessment of Community Transmission-1 study (monthly cross-sectional surveys of random samples of the population in England). STUDY POPULATION: Children aged 5-17 years in the community. PREDICTORS: Age, sex, ethnicity, presence of a pre-existing health condition, index of multiple deprivation, COVID-19 vaccination status and dominant UK circulating SARS-CoV-2 variant at time of symptom onset. MAIN OUTCOME MEASURES: Prevalence of persistent symptoms, reported as those lasting ≥3 months post-COVID-19. RESULTS: Overall, 4.4% (95% CI 3.7 to 5.1) of 3173 5-11 year-olds and 13.3% (95% CI 12.5 to 14.1) of 6886 12-17 year-olds with prior symptomatic infection reported at least one symptom lasting ≥3 months post-COVID-19, of whom 13.5% (95% CI 8.4 to 20.9) and 10.9% (95% CI 9.0 to 13.2), respectively, reported their ability to carry out day-to-day activities was reduced 'a lot' due to their symptoms. The most common symptoms among participants with persistent symptoms were persistent coughing (27.4%) and headaches (25.4%) in children aged 5-11 years and loss or change of sense of smell (52.2%) and taste (40.7%) in participants aged 12-17 years. Higher age and having a pre-existing health condition were associated with higher odds of reporting persistent symptoms. CONCLUSIONS: One in 23 5-11 year-olds and one in eight 12-17 year-olds post-COVID-19 report persistent symptoms lasting ≥3 months, of which one in nine report a large impact on performing day-to-day activities.


Subject(s)
COVID-19 , Humans , Child , Adolescent , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Vaccines , Cross-Sectional Studies , England/epidemiology
6.
Clin Infect Dis ; 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-2250471

ABSTRACT

BACKGROUND: We explore SARS-CoV-2 antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based electrochemiluminescence immunoassay (ECLIA) and live virus neutralisation. METHODS: In July 2021, 3758 participants performed, at home, a self-administered Fortress LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of IgG antibodies using the Roche Elecsys® Anti-SARS-CoV-2 ECLIA. We compared the self-reported LFIA result to the quantitative ECLIA and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralisation. RESULTS: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on ECLIA (using the manufacturer reference standard threshold for positivity of 0.8 U ml-1). Live virus neutralisation was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% CI 71.8, 84.6), 142/155 (91.6%; 86.1, 95.5) with ALFA, and 169 (100%; 97.8, 100.0) with ECLIA. There were 81 samples with no detectable virus neutralisation; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI 46.5, 68.9), 34/75 (45.3%; 33.8, 57.3) with ALFA, and 0/81 (0%; 0.0, 4.5) with ECLIA. CONCLUSIONS: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ECLIA with virus neutralisation.

7.
Nat Rev Microbiol ; 21(3): 162-177, 2023 03.
Article in English | MEDLINE | ID: covidwho-2239524

ABSTRACT

In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Immunity, Innate , Biology
8.
J Hosp Infect ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2243967

ABSTRACT

BACKGROUND: Surfaces and air in healthcare facilities can be contaminated with SARS-CoV-2. In a previous study, we identified SARS-CoV-2 RNA on surfaces and air in our hospital during the 'first wave' of the COVID-19 pandemic (April 2020). AIM: To explore whether the profile of SARS-CoV-2 surface and air contamination had changed between April 2020 and January 2021. METHODS: A prospective, cross-sectional, observational study in a multisite London hospital. In January 2021, surface and air samples were collected from comparable areas to those sampled in April 2020 comprising six clinical areas and a public area. SARS-CoV-2 was detected using RT-PCR and viral culture. Sampling was additionally undertaken in two wards with only natural ventilation. The ability of the prevalent variants at the time of the study to survive on dry surfaces was evaluated. FINDINGS: No viable virus was recovered from surfaces or air. 5% (14) of 270 surfaces and 4% (1) of 27 air samples were positive for SARS-CoV-2, which was significantly lower than in April 2020 (52% (114) of 218 of surfaces and 48% (13) of 27 air samples (p<0.001, Fisher's Exact Test)). There was no clear difference in the proportion of surfaces and air samples positive for SARS-CoV-2 RNA based on the type of ventilation in the ward. All variants tested survived on dry surfaces for at least 72 hours with a <3-log10 reduction in viable count. CONCLUSION: Our study suggests that enhanced infection prevention measures have reduced the burden of SARS-CoV-2 RNA on surfaces and air in healthcare.

9.
Wellcome Open Res ; 6: 358, 2021.
Article in English | MEDLINE | ID: covidwho-2228543

ABSTRACT

Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124; 95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62; 95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing.

10.
Microb Genom ; 9(2)2023 02.
Article in English | MEDLINE | ID: covidwho-2229659

ABSTRACT

Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adolescent , Young Adult , Adult , Middle Aged , SARS-CoV-2/genetics , Phylogeny , England/epidemiology
11.
Nat Commun ; 13(1): 7947, 2022 12 26.
Article in English | MEDLINE | ID: covidwho-2185831

ABSTRACT

Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals. Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis. COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.


Subject(s)
COVID-19 , Humans , COVID-19/pathology , Monocytes/metabolism , SARS-CoV-2/metabolism , Cytokines/metabolism , Immunity , Immunity, Innate
12.
PLoS Comput Biol ; 18(11): e1010724, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2140359

ABSTRACT

BACKGROUND: Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards. AIM: We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence. METHODS: On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions. RESULTS: Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was offset by the effects of vaccination and also affected by the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups. CONCLUSION: High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was effective at reducing risk of infection with school holidays/closures playing a significant part.

13.
Nature ; 599(7883): 114-119, 2021 11.
Article in English | MEDLINE | ID: covidwho-2114880

ABSTRACT

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.


Subject(s)
Immune Evasion , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Virus Replication/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Cell Fusion , Cell Line , Female , Health Personnel , Humans , India , Kinetics , Male , Spike Glycoprotein, Coronavirus/metabolism , Vaccination
14.
Nat Commun ; 13(1): 6856, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119477

ABSTRACT

Infection with SARS-CoV-2 virus is associated with a wide range of symptoms. The REal-time Assessment of Community Transmission -1 (REACT-1) study monitored the spread and clinical manifestation of SARS-CoV-2 among random samples of the population in England from 1 May 2020 to 31 March 2022. We show changing symptom profiles associated with the different variants over that period, with lower reporting of loss of sense of smell or taste for Omicron compared to previous variants, and higher reporting of cold-like and influenza-like symptoms, controlling for vaccination status. Contrary to the perception that recent variants have become successively milder, Omicron BA.2 was associated with reporting more symptoms, with greater disruption to daily activities, than BA.1. With restrictions lifted and routine testing limited in many countries, monitoring the changing symptom profiles associated with SARS-CoV-2 infection and effects on daily activities will become increasingly important.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , England/epidemiology
15.
Lancet Respir Med ; 10(11): 1061-1073, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106219

ABSTRACT

BACKGROUND: Knowledge of the window of SARS-CoV-2 infectiousness is crucial in developing policies to curb transmission. Mathematical modelling based on scarce empirical evidence and key assumptions has driven isolation and testing policy, but real-world data are needed. We aimed to characterise infectiousness across the full course of infection in a real-world community setting. METHODS: The Assessment of Transmission and Contagiousness of COVID-19 in Contacts (ATACCC) study was a UK prospective, longitudinal, community cohort of contacts of newly diagnosed, PCR-confirmed SARS-CoV-2 index cases. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. The primary objective was to define the window of SARS-CoV-2 infectiousness and its temporal correlation with symptom onset. We quantified viral RNA load by RT-PCR and infectious viral shedding by enumerating cultivable virus daily across the course of infection. Participants completed a daily diary to track the emergence of symptoms. Outcomes were assessed with empirical data and a phenomenological Bayesian hierarchical model. FINDINGS: Between Sept 13, 2020, and March 31, 2021, we enrolled 393 contacts from 327 households (the SARS-CoV-2 pre-alpha and alpha variant waves); and between May 24, 2021, and Oct 28, 2021, we enrolled 345 contacts from 215 households (the delta variant wave). 173 of these 738 contacts were PCR positive for more than one timepoint, 57 of which were at the start of infection and comprised the final study population. The onset and end of infectious viral shedding were captured in 42 cases and the median duration of infectiousness was 5 (IQR 3-7) days. Although 24 (63%) of 38 cases had PCR-detectable virus before symptom onset, only seven (20%) of 35 shed infectious virus presymptomatically. Symptom onset was a median of 3 days before both peak viral RNA and peak infectious viral load (viral RNA IQR 3-5 days, n=38; plaque-forming units IQR 3-6 days, n=35). Notably, 22 (65%) of 34 cases and eight (24%) of 34 cases continued to shed infectious virus 5 days and 7 days post-symptom onset, respectively (survival probabilities 67% and 35%). Correlation of lateral flow device (LFD) results with infectious viral shedding was poor during the viral growth phase (sensitivity 67% [95% CI 59-75]), but high during the decline phase (92% [86-96]). Infectious virus kinetic modelling suggested that the initial rate of viral replication determines the course of infection and infectiousness. INTERPRETATION: Less than a quarter of COVID-19 cases shed infectious virus before symptom onset; under a crude 5-day self-isolation period from symptom onset, two-thirds of cases released into the community would still be infectious, but with reduced infectious viral shedding. Our findings support a role for LFDs to safely accelerate deisolation but not for early diagnosis, unless used daily. These high-resolution, community-based data provide evidence to inform infection control guidance. FUNDING: National Institute for Health and Care Research.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , RNA, Viral , Cohort Studies , Prospective Studies , Bayes Theorem
16.
Virus Evol ; 8(2): veac080, 2022.
Article in English | MEDLINE | ID: covidwho-2051563

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

17.
Lancet Microbe ; 3(11): e814-e823, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1996842

ABSTRACT

BACKGROUND: Assessing transmission of SARS-CoV-2 by children in schools is of crucial importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shedding into air and onto fomites in both settings. METHODS: We did a prospective cohort and environmental sampling study in London, UK in eight schools. Schools reporting new cases of SARS-CoV-2 infection to local health protection teams were invited to take part if a child index case had been attending school in the 48 h before a positive SARS-CoV-2 PCR test. At the time of the study, PCR testing was available to symptomatic individuals only. Children aged 2-14 years (extended to <18 years in November, 2020) with a new nose or throat swab SARS-CoV-2 positive PCR from an accredited laboratory were included. Incidents involving exposure to at least one index pupil with COVID-19 were identified (the prevailing variants were original, α, and δ). Weekly PCR testing for SARS-CoV-2 was done on immediate classroom contacts (the so-called bubble), non-bubble school contacts, and household contacts of index pupils. Testing was supported by genome sequencing and on-surface and air samples from school and home environments. FINDINGS: Between October, 2020, and July, 2021 from the eight schools included, secondary transmission of SARS-CoV-2 was not detected in 28 bubble contacts, representing ten bubble classes (participation rate 8·8% [IQR 4·6-15·3]). Across eight non-bubble classes, 3 (2%) of 62 pupils tested positive, but these were unrelated to the original index case (participation rate 22·5% [9·7-32·3]). All three were asymptomatic and tested positive in one setting on the same day. In contrast, secondary transmission to previously negative household contacts from infected index pupils was found in six (17%) of 35 household contacts rising to 13 (28%) of 47 household contacts when considering all potential infections in household contacts. Environmental contamination with SARS-CoV-2 was rare in schools: fomite SARS-CoV-2 was identified in four (2%) of 189 samples in bubble classrooms, two (2%) of 127 samples in non-bubble classrooms, and five (4%) of 130 samples in washrooms. This contrasted with fomites in households, where SARS-CoV-2 was identified in 60 (24%) of 248 bedroom samples, 66 (27%) of 241 communal room samples, and 21 (11%) 188 bathroom samples. Air sampling identified SARS-CoV-2 RNA in just one (2%) of 68 of school air samples, compared with 21 (25%) of 85 air samples taken in homes. INTERPRETATION: There was no evidence of large-scale SARS-CoV-2 transmission in schools with precautions in place. Low levels of environmental contamination in schools are consistent with low transmission frequency and suggest adequate cleaning and ventilation in schools during the period of study. The high frequency of secondary transmission in households associated with evident viral shedding throughout the home suggests a need to improve advice to households with infection in children to prevent onward community spread. The data suggest that SARS-CoV-2 transmission from children in any setting is very likely to occur when precautions are reduced. FUNDING: UK Research and Innovation and UK Department of Health and Social Care, National Institute for Health and Care Research.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/epidemiology , Sampling Studies , Prospective Studies , London/epidemiology , RNA, Viral , Schools
18.
Nature ; 610(7930): 154-160, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991629

ABSTRACT

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Cities/epidemiology , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Humans , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/isolation & purification , Travel/legislation & jurisprudence
19.
J Virol Methods ; 309: 114607, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1983588

ABSTRACT

Demand for accurate SARS-CoV-2 diagnostics is high. Most samples in the UK are collected in the community and rely on the postal service for delivery to the laboratories. The current recommendation remains that swabs should be collected in Viral Transport Media (VTM) and transported with a cold chain to the laboratory for RNA extraction and RT-qPCR. This is not always possible. We aimed to test the stability of SARS-CoV-2 RNA subjected to different pre-analytical conditions. Swabs were dipped into PBS containing cultured SARS-CoV-2 and placed in either a dry tube or a tube containing either normal saline or VTM. The tubes were then stored at different temperatures (20-50 °C) for variable periods (8 h to 5 days). Samples were tested by RT-qPCR targeting SARS-CoV-2 E gene. VTM outperformed swabs in saline and dry swabs in all conditions. Samples in VTM were stable, independent of a cold chain, for 5 days, with a maximum increase in cycle threshold (Ct) of 1.34 when held at 40 °C. Using normal saline as the transport media resulted in a loss of sensitivity (increased Ct) over time and with increasing temperature (up to 7.8 cycles compared to VTM). SARS-CoV-2 was not detected in 3/9 samples in normal saline when tested after 120 h incubation. Transportation of samples in VTM provides a high level of confidence in the results despite the potential for considerable, uncontrolled variation in temperature and longer transportation periods. False negative results may be seen after 96 h in saline and viral loads will appear lower.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saline Solution , Specimen Handling/methods
20.
Nat Commun ; 13(1): 4500, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1972602

ABSTRACT

Rapid transmission of the SARS-CoV-2 Omicron variant has led to record-breaking case incidence rates around the world. Since May 2020, the REal-time Assessment of Community Transmission-1 (REACT-1) study tracked the spread of SARS-CoV-2 infection in England through RT-PCR of self-administered throat and nose swabs from randomly-selected participants aged 5 years and over. In January 2022, we found an overall weighted prevalence of 4.41% (n = 102,174), three-fold higher than in November to December 2021; we sequenced 2,374 (99.2%) Omicron infections (19 BA.2), and only 19 (0.79%) Delta, with a growth rate advantage for BA.2 compared to BA.1 or BA.1.1. Prevalence was decreasing overall (reproduction number R = 0.95, 95% credible interval [CrI], 0.93, 0.97), but increasing in children aged 5 to 17 years (R = 1.13, 95% CrI, 1.09, 1.18). In England during January 2022, we observed unprecedented levels of SARS-CoV-2 infection, especially among children, driven by almost complete replacement of Delta by Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/epidemiology , Child , England/epidemiology , Humans , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL